TEMPERATURE FIELD OF ROTATING ANNULAR DISKS

Sh. Sh. Abel'skii and V. K. Pashkov UDC 536.21

The axially asymmetric problem of the temperature of a rotating disk is examined; the solu-
tion is dependent on polar coordinates and time. The steady temperature field in the disk
following transient processes is analyzed.

The machining of wood, fiber boards and plastics, composition materials, precious stones, and a
number of other materials by cutting is accomplished by an instrument, the body (substance) of which is a
flexible disk 0.5-5.5 mm thick, The exact operation of this instrument depends on its dynamic stability,
which is connected for the most part with the presence of unfavorable thermal stresses in the periphery
of the disk. The unfavorable temperature stresses arise as a consequence of unequal heating of the disk
along a radius caused by location of the heat source in a restricted area of the disk periphery and the in-
tensity of its cooling through heat exchange with the surrounding medium. In order to determine the tem-
perature stresses one must know the distribution law of the temperature stresses along the radius and
along concentric circles of the body of the instrument. The temperature distribution along the radius of a
disk for the conditions of an axially symmetric problem with a steady temperature system, where one
assumes the condition that the heat acts equally along the entire peripheral cylindrical surface of the disk,
is examined in [1]. In this case an annular, rather than a solid disk is examined, for which the boundary
condition T(ry, ¢,t) = T is assumed, in connection with which its thermal resistance in the radial direc-
tion is calculated to be close to 1100 times greater than in the axial direction. The correctness of the
given boundary condition was confirmed experimentally in [2], according to the data of which even for the
part of a disk with a radius of 0.4-0.5 of the outer radius, the temperature is equal to the surrounding air
temperature T,

Heating of a rotating disk by a point source of heat was examined in {3]. However in [3] a stationary
temperature field was considered, but transient processes were not reflected, although they do have a
considerable interest for a number of practical cases. In the first place this involves the formation of
local temperature stresses in the disk, sharp temperature variation in the cutting area of the disk, which
leads to alteration in the metal structure, etc.

In the present work the temperature field is determined for a rotating circular disk, on the outer rim
of which slides a point heat source. The temperature of the inner part of the disk is taken as constant and
equal to the temperature of the surrounding medium,

The equation of thermal conductivity in our case has the form
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The solution should satisfy the initial and boundary conditions
T(r’, ¢, 0)= Tor 2)
T(ry ¢ 1) =T, 3)

and also the condition of periodicity in ¢
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Changing to a new variable

u(r, ¢, ) =T(, . )— Ty (5)

we seek a solution in the form

ulr, 9, ) = E u, (), (pm —1%) cos myp. (8)

=0

The periodicity in ¢ is satisfied for integers m, while the numbers pm are determined from the boundary
condition (3), from which it follows that

J. (um %) =0, (M

where pyry/R is the (m + 1)-th rootof this equation. We substitute (6) and the analogous expansion of Q(r,
@, t) in Eq. (1):
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The solution of (8), satisfying the initial condition uy, (0) = 0, takes the form
t
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Determining the expansion coefficients Q. (t) and substituting them in (9) we obtain for u(r, ¢, t) the expres-
sion
f
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Here x = r/R; X, = ry/R, and

Q= [ [V 0)]® — Tt W) S )} (=0, 1, 2, ..). (12)

To evaluate the integrals entering into (11) we use the method presented in [4]. We replace the (discrete)
point source of heat moving continuously around the periphery of the disk by a point source moving dis-
continuously from point to point
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Here i is the ordinal number of the discontinuous sourece, I is the total number of these discontinuities,
and : :

Q; = Q/svn,,

where n, is the number of revolutions per second of the disk, vis the number of discrete sources included
in one period, and s = 27Rb.

From evaluation of the integrals with respect to x', ¢', and t' we obtain in place of (11)
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We further substitute ¢; and t—t; in the form
o= it = L)
v v,

(15)

and total with respect to i the sums in(14). We then replace the discontinuous source with the continuously
moving point source, for which we determine the limit of the resulting expression at v — . Finally we
obtain the solution of Eq. (1) in the form
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We introduce the dimensionless temperature

T == T(f, (Pu t)_—TO K

(18)
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Equation (16) is transformed to the form
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Equation (19) describes both the transient process and the steady femperature field arising after its comple-
tion.

We now examine the case in which one may ignore the transient processes. We discard the parts in
(19) which diminish with time. Furthermore we introduce the following substitution:

¢ =@, + o, (20)
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Fig. 1. Dependence of dimensionless temperature on the angular
coordinate of an arbitrary chosen point of a stationary disk.

Fig. 2. Diagram of isotherms in a stationary disk. > T > T3(T
is the dimensionless temperature).

where ¢, is the angular coordinate of an arbitrary point of the disk stationary with respect to the source.
Then we obtain from (19)

@
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The result obtained may be interpreted in the following way. The stationary point heat source is
located at the point with polar coordinates (R, 0). A stationary temperature fieldis established in planar
coordinates satisfying the boundary conditions. The temperature at the arbitrary point of the rotating disk
undergoes harmonic oscillation, taking the periodic value 7, unambiguously determined by the coordinates
of the corresponding point of the disk. The greatest amplitude of oscillation occurs at the peripheral points
whose temperature varies within the limits from 7(R, 0) to 7(R, ) (highest and lowest values, respectively).
The amplitude of oscillation decreases with a decrease in r and at points with r = r, the temperature is
constant and equals 75 = 0.

For the case of a stationary disk (w = 0) we have

T = Ay, (pto r?) +2 EAme (ptm %) COS M, (22)
m=1

The dependence of temperature on ¢, and the isotherm in a stationary disk are shown in Figs. 1 and 2.

In the case of very rapid rotation of the disk (w — ») we obtain from Eq. (21)

v A, (HO ’?) . @3)

The temperature fieldin this case is axially symmetrical since a constant temperature is eatablished at
the periphery of the disk (the heat source is found simultaneously at all points of the outer rim of the disk).
The isotherms take the form of concentric circles.

NOTATION
r and ¢ are polar coordinates;
t is the time;
ryand R are the inner and outer radii of the disk;
b is the disk thickness;
A is the thermal conductivity coefficient;
h is the heat exchange coefficient;
o is the thermal diffusion coefficient;

Qfr, ¢, t) is the heat generated per unit time per unit volume of the disk;
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T(r, ¢, t) is the temperature at an arbitrary point of the disk;

Ty is the temperature of the surrounding medium;

w is the angular velocity of the disk;

Im is a Bessel function of the first kind of the order m;
6(x) is the delta function.
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